MCM planning and evaluation for a UxV Toolbox in a variable mine threat and environment

R Brothers

February 2019, AEUK/19/0640
Background

• The use of UxVs for MCM is rapidly increasing
 – There are a range of systems becoming available for UxV mine sweeping and mine hunting to suit a range of budgets
 – The key for each customer is to use their toolbox of systems to best MCM effect, and understand that effect

• A problem exists however, in that traditional MCM planning and evaluation (P&E) processes are not readily useful with UxVs
Problems with traditional P&E

• Traditional P&E process generally examine across-channel (1D) performance, so that performance variability $P(y)$ can only be assessed for mission legs parallel to channel
 – This does not reflect the flexibility of UxVs to operate legs from multiple angles
 – Parameter simplification difficult for UxV legs oblique to the channel
• Traditional planning for mine hunting UUVs does not always consider mine knowledge (i.e. leg spacing is based on default sonar swath) i.e. $P(y)$ is not readily used
 – Unlike traditional MCMV-based mine hunting, unlike UK Sweep TDA
• Detection and classification phases are not separate for high-resolution imaging sonars
 – $P(y)$ needs to account for both, and a new modelling approach is required
• Coverage of MCMV sonars and UxV sonars are different
 – Although statistically equal, is full spatial coverage at lower relative performance the same as incomplete spatial coverage a relatively high performance?
2D coverage mapping

- AEUK have been promoting a 2D coverage mapping approach for MCM UxV P&E for some time
- Basic coverage mapping is included within the UK Sweep TDA, with optimum P(y) based on intelligence (modelled by TMSS) and mapped to UxV tracks
New developments

- In order to address the shortfalls of traditional P&E processes in use with UxVs, AEUK conducted an internal Innovation task to develop 2D coverage mapping Matlab software to highlight the benefits:
 - Use of an Information-based Johnson’s criteria model to calculate UxV sonar P(y) based on mine and environment parameters (inc. 2D environment if available)
 - 2D coverage mapping (including environmental variation) based on planned and/or achieved tracks (any orientation)
 - Incorporation of through-the-sensor 2D missed coverage in evaluation
 - Ability to evaluate mission over time
 - Can be used with Bayes theorem for traditional MCM evaluation or with CONEMPs based only on spatial coverage
UxV sonar $P(y)$ modelling

- AEUK have adapted an Information based model to estimate imaging sonar performance
 - Predicts the results of operator simultaneous detection + classification
 - $P(y) - Pcc$ versus range
 - Determine effective swath
2D coverage mapping

- Use UxV track and heading data (planned or achieved) to map \(P(y) \) curve to 2D grid – \(P(x,y) \)
 - Map \(P(y) \) swath (from Information-based model or measurement) to leg tracks
 - Cumulative (independent) coverage e.g. \(P_{\text{cum}} = 1 - ((1-P_n)(1-P_{n+1})... \)
 - Coverage mapping can overlay charts etc. in GIS
 - Evaluate coverage in channel or area
Mapping missed coverage in-mission

- AEUK have developed an adaptive technique for auto-mapping of missed coverage in sidescan sonar/SAS imagery
- This can be accounted for in evaluation of achieved mission coverage

Example Vision SAS data
Use of GEOINT

• The 2D coverage mapping process is inherently suited to exploit modern chart-based GEOINT (e.g. AML etc.)

 - These can be exploited as part of the coverage mapping – (e.g. modifying $P(x,y)$ based on seabed type)

Example mission in rough seabed area, with “broken” legs, and non-uniform coverage
Time evolution of mission (1)

- By evaluating a mission leg by leg (or in smaller segments if required), a time evolution of MCM performance can be evaluated.
Time evolution of mission (2)

- Reports of mine finds throughout the mission (e.g. from MCM USV system) can enable an evolving Bayesian approach of determining the \textit{a-priori} distribution of mines and estimation of risk remaining versus time.
Percentage clearance and combined MCM

- Coverage mapping for both mine sweeping and mine hunting (assuming subsequent disposal) both represent a “percentage clearance”
- Consequently, the effects of both can be readily combined in P&E
- This introduces a range of combined MCM tactics that can be employed (and evaluated)
 - e.g. mine hunting followed by mine sweeping lead through
 - e.g. directed mine sweeping for mine disposal following mine search
Managing uncertainty

• This end-to-end process is capable of accounting for uncertainty in:
 – Environment
 – Mine information (type, numbers and probability of location)

• To represent the combined uncertainty, upper and lower bounds can be readily investigated together with metrics to quantify levels of uncertainty
Summary

• AEUK have developed a 2D coverage mapping process that can form the basis of an end-to-end P&E process for MCM UxV toolboxes
 – Based on mine and environment intelligence (modern GEOINT products)
 – Accounts for UxV manoeuvrability
 – As mapping based on “% clearance” only can account for mine hunting + mine sweeping – opening up a range of MCM tactics
 – Accounts for through-the-sensor missed coverage in evaluation
• This enables customers with variable budgets, and varied toolboxes to exploit them to best MCM effect
Contact

ATLAS ELEKTRONIK UK Ltd.
Dorset Green Innovation Park
Winfirth Newburgh
Dorchester • DT2 8ZB
United Kingdom
Phone: +44 (0) 1305 212400
www.uk.atlas-elektronik.com